Difference between revisions of "ASTM on Data Normalisation"
From Desal Wiki
Line 7: | Line 7: | ||
\operatorname{Specific Flux} = | \operatorname{Specific Flux} = | ||
\frac{Flux \times TCF}{NDP} | \frac{Flux \times TCF}{NDP} | ||
+ | </math> | ||
+ | <p> | ||
+ | Where: | ||
+ | <math> | ||
+ | \operatorname{TCF} = | ||
+ | e^{x} | ||
+ | </math> | ||
+ | <math> | ||
+ | x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) | ||
+ | </math> | ||
+ | NDP = Net Driving Pressure | ||
+ | <math> | ||
+ | x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) | ||
</math> | </math> | ||
[[Category:Training Material for Operators]] | [[Category:Training Material for Operators]] | ||
[[Category:Resources]] | [[Category:Resources]] |
Revision as of 07:56, 15 September 2014
$ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} $ $ \operatorname{Specific Flux} = \frac{Flux \times TCF}{NDP} $
Where: $ \operatorname{TCF} = e^{x} $ $ x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) $ NDP = Net Driving Pressure $ x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) $