Difference between revisions of "ASTM on Data Normalisation"

From Desal Wiki
 
Line 1: Line 1:
 +
<math>
 +
  \operatorname{erfc}(x) =
 +
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 +
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 +
</math>
 
[[Category:Training Material for Operators]]
 
[[Category:Training Material for Operators]]
 
[[Category:Resources]]
 
[[Category:Resources]]

Revision as of 06:56, 15 September 2014

$ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} $