Difference between revisions of "ASTM on Data Normalisation"
From Desal Wiki
Line 14: | Line 14: | ||
e^{x} | e^{x} | ||
</math> | </math> | ||
− | <p> | + | </p><p> |
<math> | <math> | ||
x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) | x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) | ||
</math> | </math> | ||
− | <p>NDP = Net Driving Pressure<p> | + | </p><p>NDP = Net Driving Pressure</p><p> |
<math> | <math> | ||
NDP = P_{feed}-\Delta \pi-\frac{\Delta P}{n+1}-P_{permeate} | NDP = P_{feed}-\Delta \pi-\frac{\Delta P}{n+1}-P_{permeate} | ||
</math> | </math> | ||
+ | </p> | ||
[[Category:Training Material for Operators]] | [[Category:Training Material for Operators]] | ||
[[Category:Resources]] | [[Category:Resources]] |
Revision as of 08:06, 15 September 2014
$ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} $ $ \operatorname{Specific Flux} = \frac{Flux \times TCF}{NDP} $
Where: $ \operatorname{TCF} = e^{x} $
$ x = u\left( \frac{1}{T+273} - \frac{1}{298}\right ) $
NDP = Net Driving Pressure
$ NDP = P_{feed}-\Delta \pi-\frac{\Delta P}{n+1}-P_{permeate} $